
EXPLOITING AMBIENT INFORMATION INTO REACTIVE AGENT ARCHITECTURES

P. N. Stamatis1, I. D. Zaharakis1, A. D. Kameas1,2

1 Research Academic Computer Technology Institute, Hellas
2 Hellenic Open University, Hellas
{stamatis,jzaharak,kameas}@cti.gr

ABSTRACT

This work presents an implementation of the subsumption
architecture to agent individuals summing up a multi-agent
system approach for the scale formation problem in secondary
oil production. This approach is evaluated through a 3D
simulator and some known issues concerning the architecture
limitations are revealed and discussed. Then, the paper
proposes a new hybrid architecture in order to minimize or
even overcome these drawbacks.

INTRODUCTION

Future Ambient Intelligence (AmI) spaces will be
populated by a large number of autonomous service
providing elements, each of which will be capable of
peer-to-peer communication as well as local sensing,
processing and storage of digital data. In certain aspects,
AmI spaces resemble distributed multi-agent systems,
where agents collaborate towards the achievement of
collective goals. Two important aspects of these systems
are the limited resource available to each agent and the
need to adapt to emerging context, such as
unavailability of peer agents, uncertain information,
network failure, etc.
In this paper we focus on multiagent systems consisting
of a large number of small-sized, reactive, homogenous
robotic agents with limited processing power and
capabilities (energy, storage capacity etc), situated in a
real-world environment. Limited capabilities force each
individual agent to have sensing capability of its
immediate environment only. Thus an individual agent
is incapable to accomplish complex tasks by itself, and
can only participate in task accomplishment by a group
of agents. However, no centralized control mechanism
is used in order to guide, direct or control the agents. In
order to achieve reactiveness and simplicity, we
implement the subsumption architecture model in every
individual agent.
The paper is structured in three parts. In the first part, an
extended description of the problem area is given, and
the reasons that led to the multi-agent approach are
discussed. Next, a brief survey on multi-agent systems
is provided and the features of the subsumption
architecture are discussed. In the second part, the
intelligent environment is described and the
implementation of the multiagent system is detailed in a

bottom up fashion, from individual agent components to
system versatility discussing some known or emerging
issues. In the third part, an agent architecture design is
proposed that overcomes some of the disadvantages of
the subsumption model.

Target Application

The architecture presented here has been implemented
in a multi-agent system, which has been used to deal
with the scale formation problem in secondary oil
production. This problem varies in severity depending
on the composition of the make-up water used in water
flooding. Scale deposits consisting either of Calcium
carbonate or Calcium and Barium sulphate cause
clogging in the pipes and damage to the pumping
systems because of the formation of tenacious scale
deposits. Calcium carbonate deposits tend to form
around various nuclei of foreign material. Bulky and
tenaciously adhering calcium carbonate deposits are
formed in riser pipes used to control water level in
secondary oil recovery processes. Moreover these
deposits are encountered in heater-treatment units, i.e.
storage tanks in which water is heated to be used for
raising the temperature of the produced fluids
facilitating the breakdown of water and oil emulsions in
order to achieve separation of the two fluids. The
process of steam-flooding of high-velocity oil reservoirs
involves also heating water into tanks. Hardness leakage
through the ion exchangers usually employed, in
combination with the bicarbonates in water result in the
formation of calcium carbonate scale that result in
dramatic reduction of the heat transfer coefficient.
Investigations on the formation of scale deposits in
industrial systems indicate that the slower the fluid
velocity the more intense the scaling problems due to
the formation of insoluble salts like calcium carbonate,
Cowan et al (15). Quasi static conditions imply no flow
or very slow flow velocities.
However, the architecture is general enough to cover
other application areas too, as it is based on the local
representation of context, the absence of local
knowledge and the context-dependent synthesis of basic
behaviours. Thus the architecture can be applied to
other environments with similar characteristics. For
example, a nano-scale application would be the cleaning
of medical equipment used for haemodialysis: the multi-
agent system is embedded to the medical equipment

giving to it the ability of self-cleaning. Another robotic
application would be garbage collection, by spreading
robots in a designated area. Finally, a software
application of this multi-agent approach could be
developed for dynamic add hoc routing in
communication networks.

Multi-agent Systems

In general, a multi-agent system consists of a (usually
large) number of homogenous or heterogeneous,
autonomous, decentralized agents. Each agent interacts
with the environment, other agents or even people.
Jennings et al (10) give a definition of a multi-agent
system as a system with the following characteristics: i)
each agent has incomplete information, or capabilities
for solving a problem, thus each agent has a limited
viewpoint, ii) there is no global system control, iii) data
is decentralized, and iv) computation is asynchronous
Taking under consideration the target application
environment, we find the multi-agent system approach
application more suitable than the traditional artificial
intelligence approach that would imply the development
of a single sophisticated agent. By using numbers of
small and process-limited agents we gain major
advantages in contrast to using a single intelligent agent:
Space: an environment such as the abovementioned has
limited space available for an agent to wander. Also, an
intelligent agent capable of solving the problem by itself
has greater size than an unsophisticated one, as it needs
more computational resources and consequently more
hardware components, energy power etc.
Cost: The total cost of developing/maintaining an
intelligent agent is greater than creating tiny agents with
limited capabilities: the multiagent system consists of
low unit cost subsystems. Also, as we are more
interested in agent societies than the individuals, the
cost of losing a number of small agents isn’t important
compared to the loss of an intelligent agent. Also, a
great number of low cost agents can be produced
without getting concerned about long term maintenance.
Robustness and reliability: A multi-agent system is
more stable than a single intelligent agent entity. Even if
a number of agents are broken/destroyed/failed, the
system will continue to operate, because other agents
already available in the system may take over their part
(16). If a single entity-processor or agent controls
everything, then the entire system could crash if there is
a single failure.
Distribution: The problem is distributed; groups of
inter-operating agents can work separately in multiple
targets while other groups search for new ones. A single
entity cannot handle this distribution at the same time.
Scalability: Since multi-agent systems are inherently
modular, it should be easier to add new agents to a
multi-agent system than it is to add new capabilities to a
monolithic system. Systems whose capabilities and
parameters are likely to need to change over time or

across agents can also benefit from this advantage of
multiagent systems, Stone et al (17).
Complexity and reactiveness: Taking under
consideration the target application area, why create a
complicated agent that wastes time and resources
making complicated computations when a multi-agent
system consisting of unsophisticated agents operating
asynchronously and in parallel, reacting immediately to
environmental changes may be fitted to accomplish the
same?
Development and Reusability (16). Individual agents
can be developed separately; the overall system can be
tested and maintained more easily, and it may be
possible to reconfigure and reuse agents in different
application scenarios.
Apparently, the multi-agent system approach is the best
fitted approach in problem areas where the problem
occurrence is distributed in a large area and there are
serious cost and space circumscriptions. In the
following, we focus on the individual agent of the
distributed system, dealing with the issues of
reactiveness and simplicity.

The Subsumption Architecture

In the latest years Artificial Life (ALife), a new AI trend
emerged which differs in major concepts from the
traditional AI scheme. Assuming that high level
intelligence is too complex to analyze, model and
manipulate, the ALife scheme uses a bottom-up
approach assuming that intelligence arises from low
level component interaction. Reactive behaviour
systems are the most known systems that have emerged
from this scheme. These systems regard behaviour as a
building block that relies on sensory input for
determining a command; a control mechanism interferes
between behaviours, excluding or including behaviours.
The arguably best-known reactive architecture is the
subsumption architecture, developed by Brooks (1).
According to this behaviour based architecture, each
individual robotic agent consists of a sensor set, an
actuator set and finally a set of simple behaviours; a
simple behaviour may be thought as an individual action
function which continually takes perceptual input (by
direct connection to the sensors) and maps it to an
action to perform.

 Fig 1. A typical subsumption model, as depicted in
(1).

The set of simple behaviours is placed in different
layers creating the subsumption hierarchy. Each
behaviour module is based on the situation→action
schema. A major defining characteristic is that more
than one behaviours may be triggered simultaneously.
Still, through the subsumption hierarchy, only one takes
control of the actuators. This means that a) there exists a
hierarchy between the behaviours, giving the privilege
to high priority behaviours to suppress lower
importance behaviours and b) each behaviour is
autonomous, meaning that it can take control of the
agent actuators if permitted. Moreover, each behaviour
is represented by a finite state machine (FSM), arranged
in the layered structure and use the inhibition /
suppression mechanisms to influence other behaviours
and to control output. The control system may be a
simple switching control circuit, giving great simplicity
in implementation. Also, the energy consumption of
such a control system is minimal, while no memory or
processing power is needed. To summarize, there are
some obvious advantages of the subsumption
architecture (and consequently in pure reactive
architectures): simplicity, economy, computational
tractability, robustness against failure and elegance,
which make this architecture appealing, Wooldridge (5).
A typical subsumption model is presented in figure 1.
Still, there are some important disadvantages in the
subsumption architecture model. First, the system
designer has to specify the suppression architecture
manually, having in mind the tasks the agent is built to
execute and satisfy. This disadvantage is brought out by
the use of the term “emergent behaviours”, meaning the
overall behaviour that emerges from interaction of the
component behaviours: the very term “emergent”
suggests that the relationship between individual
behaviours, environment and overall behaviour are not
understandable (5). As there is no principled
methodology for creating the behaviour architecture, the
designer has to use a laborious process of
experimentation, trial and error to engineer the agent, in
order to achieve an “eligible” system performance
,Rosenblatt and Payton (6). As an example, Behaviour
Analysis and Training (BAT) methodology, Colombetti
et al (14) assumes that behaviours are allocated to
behaviour al modules by design, but the function of
each module is developed by machine learning
techniques. Although, it is possible to speed up training
through the use of simulators, still the training phase can
be an extremely expensive task. Additionally, after the
time the agents are created, the architecture is concrete
and cannot be changed. In other words, the system
cannot learn from any form of experience in order to
improve its performance due to dynamic environmental
changes. Brooks specializes this problem on the
automatic construction/modification of the individual
behaviour generating modules Brooks (12). Another
major drawback is the unpredictable expandability of
the system. As new simple behaviours are asserted to
the agent individual, the interactions between the
behaviour set become more complex, making it very
difficult for someone to predict the result. Any

hierarchical perturbation may result in dramatic changes
in the system’s balance. The asserted behaviour’s level
of suppression must be tested by the designer before the
assertion is applied to the behaviour set, in order to
obtain each separate module being productive and
cooperative (12). An important drawback found not
only in the subsumption architecture but in all reactive
architectures is the “short-term” agent view: An agent
does not employ models of its environment, and any
action is determined based on local information (5).
This can trap the agent to deadlock situations that the
agent is unable to escape from. Finally, this approach
cannot deal effectively with the situation when more
than one behaviours are triggered simultaneously. This
is possible when a set of behaviours coexists at the same
time without affecting each other. As the suppression
scheme allows only one behaviour to act every time,
simultaneous actions are prohibited. This one-can-pass
restriction places serious limits that cannot be overcome
without creating a major complexity burden, as the
particular behaviour cannot stand by itself. Rosenblatt
and Payton refer to the above problem as the
“Inadequate Command Fusion” (6).
Some of the abovementioned problems may be treated
either by creating task-specialized alternatives of the
subsumption architecture (6), or by using
complementary architectures/techniques. Another
alternative is to create hybrid architectures, e.g. Flakey
robot by Saffiotti (9) applies hierarchy in a fuzzy
behaviour architecture or TOURINGMACHINES, Ferguson
(3), a hybrid architecture system containing
subsumption).

SYSTEM DESCRIPTION

The following section focuses on the illustration of the
intelligent environment, and on the analysis of some
arising issues. Moreover, it describes the adopted
architecture and analyzes the sensing, behaviour and
actuator modules. The oil pipe environment is used as
an example, although the approach can be generalized
and applied to other environments as discussed in the
introduction.
The intelligent environment was simulated through a
Java built application using the J3D API. The
application provides 3D observation and CSV
accumulation data. Accumulation data concern global
phenomena, e.g. fault creation (time, position, range
etc), fault repair and local phenomena like collisions
(agent with agent and agent with other permanent
obstacles), total transitions, etc., 3D observation is
needed to observe emerging group behaviours like chain
following and flocking.

The intelligent environment

Intelligence is diffused to the oil tank environment by
spreading a large number of small-sized agents inside
 one compartment of the fluidic environment. Agents
circulate in the compartment continuously sensing for
“fault signals”. The “fault signal” is an environmental
stimulus that signals the presence of a faulty element. In
that case, it corresponds to an altered chemical/physical
property e.g. pH/conductance. A representation of a
damaged area as the consequence of the damage in the
environment is given by Fig 2.
 When an agent perceives a “fault signal”, it moves
towards its source (i.e. the fault area) and
simultaneously releases a “pherormone” signal, which
ultimately “attracts” other agents: when any of the other
agents perceive the signal, they move towards its source
(i.e. the agent having perceived the fault signal) and also
start emitting the pherormone signal themselves. The
effect of pherormone signal on each agent is
cumulative. As pherormones are summed more agents
are eventually attracted towards the fault area; when a
signal threshold is exceeded, a spatio-temporally
ordered community is formed, which deals with the
fault (i.e. by releasing a proper chemical substance).
When agents repair the fault the strength of the original
environmental stimulus drops, pherormones diminish
and hence the community disperses.
The large number of agents spread over the
compartment reinforces the overall sensing capability of
the system: Each agent has a local sensing area but the
overall system sensing depends on the distribution of
the agents. In normal conditions, each agent tends to
avoid social gathering, so as to minimize the chances of
collision and, maximize the overall system sensing area
at the same time. Collision with any moving or static
“obstacle” is a non-eligible situation that can cause
stultification of the agent.
Also, due to limited capability, an agent is not capable
of dealing with the fault by itself. The total effort
increases (proportionally or even exponentially)

depending on the agent number density in the particular
area of the fault. Thus, in such a situation, the need of
agent coiling is necessary.
An important resurgent issue is the form of
communication. We chose indirect communication
instead of direct communication as the latter is
undesirable for certain reasons. First, the sensing
capability of each agent is local and not global. This
implies that a listening agent must compute a series of
transformations in order to use that information.
Besides, limited capabilities and energy consumption
restrict large packet transfer. The form of the indirect
communication is active stigmergy: an agent alters the
environment so as to affect the sensory input of another
agent. In this case, alteration occurs with the
broadcasting of the pherormone signal, which is used as
a “quorum sense” signal. This form of stigmergy covers
the lack of memory of the agent in a simple manner:
The information is received and placed in the
environment. The agent doesn’t have to remember the
position of the fault. It just follows the path to it. To
rephrase Brooks, we do not model any individual agent
neither the environment; instead, the “world is the
model itself”.
Another issue is agent size. Taking under consideration
the environment’s fixed capacity, system performance is
related to agent size and agent total number: system
performance is growing relatively with the number of
agents. Still, as agent density grows, agent circulation is
constrained as each agent has to avoid many “moving”
obstacles. Reducing agent capacity without reducing
agent acting power is a feasible (if not the only) option.
In this paper, we do not intend to study ways of
reducing sensor-actuator size. Sensor and actuator
modules are provided with fixed capacity and energy
consumption specifications On the other hand, the
requiring energy storage module holds a very significant
percentage of the total capacity. Considering the current
battery miniaturization technology, we focus on
minimizing energy consumption. This inevitably leads
to the agent processing module. In order to preserve
energy and space, the processing module must be as
small as it can be. Considering that circuit size is related
to processing power and complexity, we conclude that
the only way of reducing agent capacity without
affecting its sensor/actuator capabilities is implementing
a simple, non sophisticated processing unit.
The final issue is system effectiveness. The intelligent
environment must deal with the fault as soon as possible
as any delay may worsen the fault area situation. This
means that the system must react immediately from the
time a fault is created to the time the fault is repaired.
Three critical time lapses are discriminated, making the
difference between desirable and undesirable outcomes:

(i) fault creation to fault detection lapse
(ii) fault detection to agent rallying lapse
(iii) agent rallying to fault repair lapse.

It is obvious that overall system reactivity is depended
on

a) the distribution of the agents; this in turn depends
on 1) the “social repulsion” of the agent which

Fig 2. Representation of the damage incipient on
calcification. As a consequence of the formation of

scale, local pH drops and the signal is transmitted to
the pH sensors that record pH values depending on
their spatial distribution with respect to the damage

(8).

depends on behaviour design and implementation
and 2) the number of the agent individuals
involved. The (i) fault creation to fault detection
timing lapse improves by sparse distributions of as
many as possible agents.
b) the sensor/actuator power of the agent
individual, e.g. how fast can it move, what is the
strength of the repairing actuator etc. This affects
both (ii) and (iii) lapses.
c) the individual agent reactiveness, regarding react
agent reaction speed to sensor stimuli perceived.
This is a crucial issue because through the
procedure of mapping the sensor stimuli to the
actuators the whole performance of the agent is
affected. Delayed reaction wastes/degrades sensing/
acting capability affecting the overall system
capability. In (ii) lapse for example, if agents don’t
exploit stigmergic information in a productive way,
valuable time will be lost until a group/swarm is
formed to repair the fault.

The above mentioned agent individual requirements
lead to the subsumption architecture schema
implementation which is described in the next
paragraph.

The Subsumption Architecture schema
implementation

The subsumption architecture is implemented in each
agent individual. Each agent is equipped with sensor
devices (the sensor module), actuator devices (motors
pumps etc) and finally the behaviour module in which
the Subsumption hierarchy is applied.

Sensor module: This module consists of three kinds of
sensing elements: a set of infrared sensors placed on the
body of agent so that they can sense a short-range
spherical area around the agent. Depending on the
values returned by the set of these sensors, the agent is
able to separate large from small objects. Also, it can
calculate the relative distance between the objects and
the agent. A pH sensor is used in order to make pH
measurements. Any pH disturbance (drop) indicates a
fault area. Finally, the agent is equipped with a
“pherormone” sensor, a virtual sensing element which
traces pherormone signals and returns its intensity.

Actuator module: This module consists of four
actuators. The first actuator is the steering actuator.
This actuator controls the orientation of the agent in
space. The second actuator is speed actuator, which
controls the speed of the agent move. The release
pherormone actuator is a virtual on/ off actuator that
releases a pherormone signal when enabled. Finally the
release chemical substance actuator is an on/off
actuator that releases a fixed quantity of the proper

chemical substance in order to clean the fault area from
calcium carbonate.

Behaviour module: This module consists of seven
simple behaviours. A high level description of these
behaviours is given below.

avoid_obstacles. This simple behaviour is enabled
when the agent is close to a mass object. The behaviour
fires a new steering direction that is reversal to the
direction towards this object. The speed command
depends on the distance of the object.
avoid_kin. This simple behaviour ensures the agent
won’t collide with other agents. In this point it is
remarked that the simple behaviour name doesn’t imply
that the agent can conceptualise or recognize other
agents; it only senses “small moving objects”. The
operation of this behaviour is similar to the
avoid_obstacles behaviour. The behaviour is
enabled when an agent is close enough and fires a new
steering direction that is reversal to the direction
between the two agents. The speed command depends
on the distance of the object. If more than one agents are
close enough, the behaviour converges to avoid the
closest one.
chase. A simple behaviour that makes the agent chase
another agent that is close enough. This behaviour is
enabled when a “moving obstacle” is traced from the
front infrared sensors (“front” in 3-dimentions is the
direction of move). The behaviour fires a new
steering direction directly to the traced object.
Speed command is relative to the distance between the
two agents. In case more than one agent are in the zone
of follow enabling, the behaviour chooses randomly.
aggregate. A simple behaviour that makes the agent
move towards a centroid point. This centroid is the
centre of the area defined by the sensed objects around
the agent. This behaviour is responsible for agent
rallying. The behaviour fires a new steering
direction directly to the centroid point. Speed command
is relative to the distance between the agent and the
centroid. It also enables the pheromone actuator.
disperse. This simple behaviour is contradictory to
aggregate behaviour. It is used to spread dense
formations of agents. The behaviour is enabled when
the density of “moving obstacles” around the agent is
big enough. The behaviour fires a new steering
direction directly reverse to the centroid point. Speed
command is relative to the distance between the agent
and the centroid.
wander. The basic behaviour that enables the agent to
circulate in the tank. This behaviour fires random
steering and a particular speed command to the
actuators. This behaviour is always enabled.
repair. This is the final simple behaviour. This
behaviour is triggered when the pH value returned from
the pH sensor has exceeded a threshold value. This
results a steering command towards the sensed large

object with a minimal speed command. If it touches the
object, the behaviour sends the release chemical
substance command, making the agent release a fixed
quantity of the chemical substance.

Subsumption hierarchy

Fig 3 depicts a detailed description of the agent
components, showing the sensory input for each simple
behaviour and the suppression hierarchy between the
seven simple behaviours. Suppression is represented by
a two input/ one output link switch node: the node
propagates data arriving from the weak (grey) link only
if no data has arrived through the strong (black) link.
High importance behaviours are placed on top,
suppressing behaviours of lower importance, placed
below them. The most important behaviour is repair.
If the repair behaviour is enabled, all other behaviours
are suppressed. The next behaviour in order of
importance is avoid_obstacles, which secures the
agent from bumping into other things. The suppression
hierarchy continues with the avoid_kin, aggregate,
disperse, chase and finally the wander behaviour.
The least important wander behaviour controls the
actuators only if no other behaviour is enabled. The
particular hierarchy came up after several simulations
concerning different hierarchies. Each hierarchy was
tested according to the total number of collisions and
the fault handling time. Although other hierarchies dealt
also well with the fault and collisions, the particular
hierarchy was chosen because of the most evident
occurrence of some complicated behavior discussed
later.

The test case scenarios

The simulation scenario considers a cubic water tank
and a cylindrical tube (oil pipe) crossing in the middle
of the tank. Agents (conic objects) are floating inside
the tank. The first test case scenario involved an overall
observation of the agents during a bounded interval. The
second test case scenario involved the manual creation
of a major fault on the tube and agents overall behaviour
observation. This test set was repeated for a small (30),
a medium (100) and a large (200) number of agents.
The first result is that in normal situations where no
fault area was formed, no collision happened. On the
other side, multiple collisions occurred when agents
where gathering around a fault area. The number of
collisions was relative to the total number of agents (Fig
4). A possible reason for that could be the restriction of
movement as the agent gets closer to other agents,
taking under consideration that the avoid_kin
behaviour does not perform well when it has to choose
one obstacle to avoid. A possible solution would be the
use of dispersion but unfortunately this would slow
if not restrict agent group formations, as the particular
behaviour is contradictory to aggregation behaviour.
Another important result is that the number of repair
behaviors is not growing relative to the agent total
number (Fig 5). The number of repairs has a meaning
regarding that a released chemical compound is added
to the chemical compound released already. This is
probably because of the relative to the agent total
number increasing of collisions (collisions/repair:
0,39%, 2,16% and 7,47% for 30agent, 100agent and
200agent system respectively). Finally, chain following
was intense (formation and duration of its consistency)
in small and average numbers of agents. In large
numbers of agents, this phenomenon was sensibly
weaker. In Fig 6 we give a snapshot from the simulator,
showing agent rallying around a “fault” area.

Fig 3. A detailed description of the three agent components, focusing on the connection between sensors and

simple behaviours and the subsumption hierarchy.

Average agent-to-agent Collisions during 130 sec

0

10

20

30

40

50

60

30 agents 100 agents 200 agents

nu
m

be
r o

f c
ol

lis
io

ns

Fig 4. The total number of collisions during the 130
seconds of simulation.

Average repair during 130sec

0
100
200
300
400
500
600
700
800

30 agents 100 agents 200 agents

nu
m

be
r o

f r
ep

ai
rs

Fig 5. The total number of repairs during the 130

seconds of simulation.

Fig 6. A snapshot showing the creation of a group

(flock) of agents near the fault area.

Discussion

The subsumption architecture was applied to the scale
formation problem, where simulation showed that a
multi agent system consisting of agents applying the
purely reactive subsumption model is well fitted. It
came out that more complex behaviours emerge even
when no indirect communication is applied. If the area
of the pH distribution is large, a satisfactory number of
agents will sense the pH disturbance. The pherormone

distribution and attenuation do not “enlarge” the already
large fault area while inside the pH disturbance,
aggregation is enabled no mater whether a pherormone
exists or not. The importance of pherormone becomes
bigger if the area of pH disturbance is small; the
pheromone “adds” important space to the fault area,
making more agents enable the aggregation behaviour.
During the simulation observation, the system revealed
an overall complicated collective behaviour that
emerges from the interactions of the agent individuals.
In Fig 7, a bottom-up diagram is given presenting the
way simple behaviours in a single agent level are
affecting global system behaviour, making it exhibit an
overall collective behaviour. An emerging behavior
arises from simple behavior interaction in such an intra-
agent (suppresion) as to an inter-agent (behavior
sequences over time) level. The safe wandering overall
behaviour emerges from the combination of wander,
avoid_obstacles, and avoid_kin simple
behaviours between a set of agents. Agents circulate in
the environment while avoiding bumping into the walls,
the tube or other agents. This behaviour can also be
observed by the overall combination of the three
component behaviours in a particular individual. The
safe following behaviour is an emerging behaviour
from the sequential combination of avoid_kin and
chase. An agent tries to chase another agent that is in
front of it. When the agent gets very close, the higher
importance avoid_kin behaviour is enabled. This
behaviour is observed in pairs of agents. The chain
group safe wandering high level emerging behaviour
is observed in large groups of agents. This behaviour
describes dynamic chains of 3-10 agents circulating in
the environment. The duration of a chain formation
depends on the non-chained agent distribution on the
area of the chain formation. Chains seem to diminish
when chained agents are forced to change dramatically
their steering direction in order to avoid an agent side-
approaching or the chain is lead to a wall or tube. In the
second case, the leading agent is forced to make a large
and continuous turn “confusing” the chain followers.
The flock emerging behaviour is observed when agents
enable the simple aggregate behaviour. The overall
result is a group of agents converging to the centre of
the group area, creating a slow moving flock. As the
resulting flock is converging, it is possible that some
agents get closer enough the fault, enabling the repair
behaviour. This implies that the centre of the flock is
shifting towards the fault area. On the other hand,
pheromone release attracts more agents (or chains,
according to the relative emerging behaviour). The
result is that agents closer to the fault are heading
towards the tube releasing the chemical substance while
others try to keep a relative position to the flock, always
trying to avoid each other. This leads to an overall
intelligent self-healing attribute of the system.
The safe diminishment emerging behaviour is observed
in areas that agent distribution is dense, possibly after a
flock creation. The disperse behaviour, combined
with the higher importance avoid_kin and

avoid_obstacles behaviours is enabled leading to a
gradient diminishment of the flock
Finally, when the fault is cleaned and thus no pH
disturbance is sensed, the safe diminishment emergent
behaviour occurs spreading the dense flock formation.
We claim that concatenation of the environment self-
healing and safe diminishment results to an overall
system high level property, the intelligent
environmental equilibrium.
During the simulation, we exposed the very important
issue of each behaviour triggering conditions. The
subsumption architecture is a very simple architecture
that is based on behavioural hierarchy. If more than one
behaviours are triggered, the higher importance
behaviour suppresses the others. Also, different
importance behaviours get the same sensor data. It is
obvious that the triggering conditions of a behaviour are
very important and affect not only the behaviour rate of
triggering, but a) the prevail of lower importance
behaviours and b) the occurrence of global phenomena
/emerging behaviours. A very prominent example is the
safe following emerging behaviour: The chase and the
higher-importance avoid_kin simple behaviours use
the same sensory input. Each behaviour has an akin
triggering condition, which is the distance between the
agent and a “moving obstacle”. In each case, the
behaviour is triggered if this distance is less than a
distance threshold, let d1 and d2 for the chase and
avoid_kin behaviour respectively. If d1 < d2, the
chase behaviour will never prevail, leading to safe
following extinction which finally affect the whole
environmental equilibrium. On the other hand, d1 > d2
condition doesn’t ensure the system stability. If the
difference Δd is short enough, a behavioural switching
from chase to avoid_kin may not have the expected
results, e.g. the chasing agent cannot slow down/stop in
time causing a collision. Collisions are not expected

(especially between high speed moving agents) from the
system, which in every case looses its stability
collisions reduce safe following, which in turn reduces
chain sustention which leads to an untuned overall
appearance. In this point we cite that the emerging
behaviours were observed for a particular tuning of
every simple behaviour triggering conditions. Changing
these conditions, we surely untune or even diminish the
emergent behaviours, it is possible on the other hand,
other complicated behaviours to occur. This leads to the
claim that intelligence is an attribute that is given by the
beholder.

Future Work

The previous section exposed (agreed with the) several
problems and limitations of the subsumption
architecture discussed in beginning of this paper. In this
section, a hybrid architecture is proposed that combines
the subsumption architecture and fuzzy behaviour
univalued based system approaches and methods in a
different way in order to create simple, reactive, and
scalable robotic agents, overriding these limitations at
the same time.
Each agent individual consists of four separate modules.
The first one is the Sensor module. This module
contains various input devices (sensor devices) that the
agent is equipped with. The Behaviour module
essentially is a collection of simple behaviours which
are hardware components implemented to execute
specific tasks. The Selection module is actually a
controller that gathers every simple behaviour output
and selects a final output, which is passed to the
Actuator module. The actuator module contains the
several actuators the agent is equipped with in figure 8

Fig 7. Interpretation of System emerging behaviours

we give a representation of the modules and their
connections.

Behaviour module: This module contains each simple
behaviour. A simple behaviour is a separate hardware
module which is connected to the Sensor module which
provides the behaviour with sensory input. This type of
connection may differ between different simple
behaviours as each simple behaviour is fed by different
sensory input. Each simple behaviour uses the sensory
input to react immediately producing a message that is
propagated to the Selection module. The operation of
each simple behaviour is alike to the operation of the
behaviour of the reactive (subsumption) model. The
difference is that the simple behaviour is not directly
connected to the actuators but it is reacting in a
behavioural stage, producing a data stream (packet) that
is propagated to the next module. This packet contains a
header and separate blocks of data, corresponding to
each actuator.

Selection module: The Selection module receives the
behavioural outputs as packets. These packets are
propagated to a network of nodes, each of comparing
two neighbouring packets. Depending on the result,
each node propagates the “best” of the packets
(suppression) or an integration of these packets into one.
In general, the Selection module for n simple
behaviours can be represented as a grid of nodes,
separated in n layers. The first layer contains n nodes
while the last layer contains 1 node. Each middle layer
contains 2-input/2-output nodes, where the input links
are outputs of two adjacent nodes of the previous layer
while the two outputs are linked with the nodes of the
next layer. Figure 9 represents the produced grid for
four simple behaviours.
Each simple behaviour fires when all of its triggering
conditions are satisfied. A triggering condition may be a
signal from, for example, an infrared sensor, a particular
value of the pH sensor etc. We claim that no matter the
assigned importance of the behaviour, the grade of
behaviour triggering must be taken under consideration.
Thus, each sensor signal is passed through a fuzzy
controller that computes a response factor independently
of the simple behaviour output. The controller output is
added to the simple behaviour output and the data
packet is then propagated to the selection module.

Fig 9. A 10-node grid correspond to four simple

behaviours.

A total weight w is computed regarding both the
assigned importance (behavioural importance s) and the
grade of behaviour triggering p:

w=f(s,p)

The node behavior is to compare the packets arriving,
let packet1 and packet2, with w1, w2 total weights
respectively;

Δw = w1-w2

Next, according to a threshold θ∈ℝ+, the node
propagates either one of the packets (suppression) or an
integration of the two packets. After the final packet is
propagated by the final node, it is rationed out and
propagated to the Actuator module.
User defined suppression factor and system-defined
sensor sensitivity factor are both considered into a total
weight. According to this new factor, the behaviour
output packets are emulating each other in a triadic
logic. This logic makes the agent behaviour changes
smoother, depending on the grading of sensory input.
Also it keeps the reactive character of the involved
approaches.
This design can support training in three different
aspects of data propagation from the moment a stimulus
is perceived to the moment an actuator is ordered to act.
The first aspect is Simple behaviour triggering. Can we
find the “best” set of triggering thresholds in order to
maximize the Simple behaviour efficiency taking under
consideration the possible interaction with other
triggered Simple Behaviours? Also, what is the “best”
relationship between the response factor and sensory
input? Another aspect of training is the behaviour
integration/suppression procedure in the Selection
module. First, the integration rate is relative to the
threshold value; Second, the formula w=f(s,p) can be
modified; What is the relationship between user-defined
suppression and system/sensor defined response factor?
Finally, training can occur regarding packet integration.
In that case, crucial answers must be taken about packet
manipulation and System tolerance to erroneous packet
integrations.

Fig 8 A general representation of the proposing

hybrid system.

Conclusions

The simulated environment confirmed that a multi-agent
system consisting of agents applying the purely reactive
subsumption model is well fitted to the scale formation
problem. During the simulation, new collective
behaviours emerge even when no indirect
communication is applied. Although these collective
behaviours (which represent the “intelligence” of the
environment) are very sensitive not only to changes in
the behavioural hierarchy in the agent level but also to
tiny modifications of the simple behaviour triggering
conditions in the simple behaviour level. The way
simple behaviours of different agents interact through
time can be estimated and not predicted before the
simulation. This estimation is validated through the
resulting collective behaviors.
Finally, a new hybrid architecture is proposed that
combines the subsumption architecture and fuzzy
behaviour univalued based system approaches. This
new architecture increases the acting potential of each
agent and may support training; still this issue is
premature and must be studied in future work.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
European Community under the “Information Society
Technologies” Programme (01/01/2003-31/12/2005),
Project SOCIAL IST-2001-38911,
http://www.socialspike.net.

REFERENCES

1 Brooks, R., 1985, “A robust layered control

system for a mobile robot”, Tech. Rep. A.I.
Memo 864, Massachusetts Institute of
Technology Artificial Intelligence
Laboratory

2 Butler, G, Gantchev, A, Grogono, P., 1999,
“Reusable Strategies for Software Agents via
the Subsumption Architecture”, apsec, p.
326, Sixth Asia-Pacific Software
Engineering Conference

3 Ferguson, I., 1992, “TouringMachines: An
Architecture for Dynamic, Rational, Mobile
Agents”, PhD thesis, Clare Hall, University
of Cambridge, UK (1992) (Technical Report
No. 273, University of Cambridge Computer
Laboratory)

4 Müller, J., 1997, “A cooperation model for
autonomous agents", Intelligent Agents III

(LNAI Volume 1193). Springer-Verlag:
Berlin, Germany, 245–260

5 Wooldridge, M., 1999, “Intelligent Agents”,
in G. Weiss (ed.) Multiagent Systems: A
Modern Approach to Distributed Artificial
Intelligence, MIT Press

6 Rosenblatt, K, Payton, D., 1989, “A fine
grained alternative to the subsumption
architecture for mobile robot control”, In
Proceedings of the IEEE/INNS International
Joint Conference on Neural Networks,
Washington, D.C.

7 Nilsson, N., 2000, “Learning Strategies for
Mid-Level Robot Control: Some Preliminary
Considerations and Results” (unpublished
note available at
http://ai.stanford.edu/users/nilsson/publicatio
ns.htm)

8 SOCIAL Project, IST-2001-38911,
http://www.socialspike.net/

9 Saffiotti, 1998, "A. Fuzzy Logic in
Autonomous Robot Navigation: a case
study”, Chapter G6 ``Autonomous Robot
Navigation'' , Ruspini, E, Bonissone, P,
Pedrycz W.: Handbook of Fuzzy
Computation, Eds. Oxford Univ. Press and
IOP Press

10 Jennings, N, Sycara, K, Wooldridge, M.,
1998, “A roadmap of agent research and
development”, Journal of Autonomous
Agents and Multi-Agent Systems 1, 275-306

11 Wooldridge, M, Jennings, N., 1995,
“Intelligent agents: Theory and practice”,
Knowledge Engineering Review 10(2)

12 Brooks R., 1990, “Elephants Don’t Play
Chess”, Robotics and Autonomous Systems,
Vol. 6, 3-15

13 Brooks R., 1991, “Intelligence without
representation,” Artificial Intelligence,
vol.47, no.1-3, 139–159

14 Colombetti M., Dorigo M., Borghi G., 1996,
“Behavior Analysis and Training: A
Methodology for Behavior Engineering”,
IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26, 3, 365-380

15 Cowan, J, Weintritt, D., 1975, Water Formed
Scale Deposits, Gulf Publ. Co. Houston
Texas, 223-226

16 Weiss G., (ed.), 1999, "Multiagent Systems:
A Modern Approach to Distributed Artificial

Intelligence ", The MIT Press, Cambridge,
Massachusetts

17 Stone P.and Veloso M., 1997, “Multiagent
systems: A survey from a machine learning
perspective”. Submitted to Journal of
Artificial Intelligence Research (JAIR)

18 Craig Reynolds, BOIDS,
http://www.red3d.com/cwr/boids/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

